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Abstract

 

Multiplicity of data, hypotheses, and analyses is a common problem in biomedical and epidemiological research. Multiple testing theory
provides a framework for defining and controlling appropriate error rates in order to protect against wrong conclusions. However, the cor-
responding multiple test procedures are underutilized in biomedical and epidemiological research. In this article, the existing multiple test
procedures are summarized for the most important multiplicity situations. It is emphasized that adjustments for multiple testing are re-
quired in confirmatory studies whenever results from multiple tests have to be combined in one final conclusion and decision. In case of
multiple significance tests a note on the error rate that will be controlled for is desirable. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

 

Many trials in biomedical research generate a multiplic-
ity of data, hypotheses, and analyses, leading to the perfor-
mance of multiple statistical tests. At least in the setting of
confirmatory clinical trials the need for multiple test adjust-
ments is generally accepted [1,2] and incorporated in corre-
sponding biostatistical guidelines [3]. However, there seems
to be a lack of knowledge about statistical procedures for
multiple testing. Recently, some authors tried to establish
that the statistical approach of adjusting for multiple testing
is unnecessary or even inadequate [4–7]. However, the main
arguments against multiplicity adjustments are based upon
fundamental errors in understanding of simultaneous statis-
tical inference [8,9]. For instance, multiple test adjustments
have been equated with the Bonferroni procedure [7], which
is the simplest, but frequently also an inefficient method to
adjust for multiple testing.

The purpose of this article is to describe the main con-
cept of multiple testing, several kinds of significance levels,
and the various situations in which multiple test problems in
biomedical research may occur. A nontechnical overview is
given to summarize in which cases and how adjustments for
multiple hypotheses tests should be made.

 

2. Significance tests, multiplicity, and error rates

 

If one significance test at level 

 

a

 

 is performed, the proba-
bility of the type 1 error (i.e., rejecting the individual null
hypothesis although it is in fact true) is the 

 

comparisonwise
error rate

 

 (CER) 

 

a

 

, also called 

 

individual level

 

 or 

 

individual
error rate

 

. Hence, the probability of not rejecting the true
null hypothesis is 1 

 

2 a

 

. If 

 

k

 

 independent tests are performed,
the probability of not rejecting all 

 

k

 

 null hypotheses when in
fact all are true is (1 

 

2 a

 

)

 

k

 

. Hence, the probability of reject-
ing at least one of the 

 

k

 

 independent null hypotheses when
in fact all are true is the 

 

experimentwise error rate

 

 (EER)
under the complete null hypothesis EER 

 

5 

 

1 

 

2 

 

(1 

 

2 a

 

)

 

k

 

,
also called 

 

global level

 

, or 

 

familywise error rate

 

 (consider-
ing the family of 

 

k

 

 tests as one experiment). If the number 

 

k

 

of tests increases, the EER also increases. For 

 

a 5 

 

0.05 and

 

k 

 

5 

 

100 tests EER amounts to 0.994. Hence, in testing 100
independent true null hypotheses one can almost be sure to
get at least one false significant result. The expected number
of false significant tests in this case is 100 

 

3 

 

0.05 

 

5 

 

5. Note
that these calculations only hold if the 

 

k

 

 tests are 

 

independent

 

.
If the 

 

k

 

 tests are correlated no simple formula for the EER ex-
ists, because EER depends on the correlation structure of the
tests.

Frequently, the global null hypothesis, that all individual
null hypotheses are true simultaneously, is of limited inter-
est to the researcher. Therefore, procedures for simulta-
neous statistical inference have been developed that control
the 

 

maximum experimentwise error rate

 

 (MEER) under any
complete or partial null hypothesis, also called 

 

multiple

 

* Corresponding author. Tel.: 

 

1

 

49 521 106-3803; fax: 

 

1

 

49 521 106-
6465.

 

E-mail address:

 

 Ralf.Bender@uni-bielefeld.de (R. Bender)



 

344

 

R. Bender, S. Lange / Journal of Clinical Epidemiology 54 (2001) 343–349

 

level

 

, or 

 

familywise error rate in a strong sense

 

. The MEER
is the probability of rejecting falsely at least one true indi-
vidual null hypothesis, irrespective of which and how many
of the other individual null hypotheses are true. A multiple
test procedure that controls the MEER also controls the
EER but not vice versa [10]. Thus, the control of the MEER
is the best protection against wrong conclusions and leads to
the strongest statistical inference.

The application of multiple test procedures enables one
to conclude which tests are significant and which are not,
but with control of the appropriate error rate. For example,
when three hypotheses A, B, C are tested and the unadjusted

 

P

 

 values are 

 

P

 

A 

 

5 

 

0.01, 

 

P

 

B 

 

5 

 

0.04, and 

 

P

 

C 

 

5 

 

0.10, the Bon-
ferroni correction would lead to the adjusted 

 

P

 

 values 

 

P

 

A 

 

5

 

0.03, 

 

P

 

B 

 

5 

 

0.12, and 

 

P

 

C 

 

5 

 

0.30. From this result we can
conclude that test A is significant and tests B and C are not
significant by controlling the MEER of 0.05.

 

3. When are adjustments for multiple tests necessary?

 

A simple answer to this question is: If the investigator
only wants to control the CER, an adjustment for multiple
tests is unnecessary; if the investigator wants to control the
EER or MEER, an adjustment for multiple tests is strictly
required. Unfortunately, there is no simple and unique an-
swer to when it is appropriate to control which error rate.
Different persons may have different but nevertheless rea-
sonable opinions [11,12]. In addition to the problem of de-
ciding which error rate should be under control, it has to be
defined first which tests of a study belong to one experi-
ment. For example, consider a study in which three different
new treatments (T1, T2, T3) are compared with a standard
treatment or control (C). All six possible pairwise compari-
sons (T1 vs. C, T1 vs. T2, T1 vs. T3, T2 vs. C, T2 vs T3, T3
vs. C) can be regarded as one experiment or family of com-
parisons. However, by defining the comparisons of the new
treatments with the control (T1 vs. C, T2 vs. C, T3 vs. C) as
the main goal of the trial and the comparisons of the new
treatments among each other (T1 vs. T2, T1 vs. T3, T2 vs.
T3) as secondary analysis, this study consists of two experi-
ments of connected comparisons. In this case it may be ap-
propriate to perform separate multiplicity adjustments in
each experiment. In general, we think it is logical that the
MEER should be under control when the results of a well-
defined family of multiple tests should be summarized in
one conclusion for the whole experiment. For example, if
each new treatment is significantly different from the stan-
dard treatment, the conclusion that all three treatments dif-
fer from the standard treatment should be based upon an ad-
equate control of the MEER. Otherwise the type 1 error of
the final conclusion is not under control, which means that
the aim of significance testing is not achieved.

Such a rigorous proceeding is strictly required in confirma-
tory studies. A study is considered as confirmatory if the goal
of the trial is the definitive proof of a predefined key hypoth-
esis for final decision making. For such studies a good pre-

defined statistical analysis plan is required. A clear prespeci-
fication of the multiple hypotheses and their priorities is
quite important. If it is possible to specify one clear primary
hypothesis there is not multiplicity problem. If, however, the
key hypothesis is proved by means of multiple significance
tests, the use of multiple test procedures is mandatory.

On the other hand, in exploratory studies, in which data
are collected with an objective but not with a prespecified
key hypothesis, multiple test adjustments are not strictly re-
quired. Other investigators hold an opposite position that
multiplicity corrections should be performed in exploratory
studies [7]. We agree that the multiplicity problem in ex-
ploratory studies is huge. However, the use of multiple test
procedures does not solve the problem of making valid sta-
tistical inference for hypotheses that were generated by the
data. Exploratory studies frequently require a flexible ap-
proach for design and analysis. The choice and the number
of tested hypotheses may be data dependent, which means
that multiple significance tests can be used only for descrip-
tive purposes but not for decision making, regardless of
whether multiplicity corrections are performed or not. As
the number of tests in such studies is frequently large and
usually a clear structure in the multiple tests is missing, an
appropriate multiple test adjustment is difficult or even im-
possible. Hence, we prefer that data of exploratory studies
be analyzed without multiplicity adjustment. “Significant”
results based upon exploratory analyses should clearly be
labeled as exploratory results. To confirm these results the
corresponding hypotheses have to be tested in further con-
firmatory studies.

Between the two extreme cases of strictly confirmatory
and strictly exploratory studies there is a wide range of in-
vestigations representing a mixture of both types. The deci-
sion whether an analysis should be made with or without
multiplicity adjustments is dependent on “the questions
posed by the investigator and his purpose in undertaking the
study” [13]. Whatever the decision is, it should clearly be
stated why and how the chosen analyses are performed, and
which error rate is controlled for.

In the following, we consider the case of a confirmatory
study with a clear prespecified key question consisting of
several hypotheses analyzed by multiple significance tests.
These tests represent one experiment consisting of a family
of connected significance tests. For a valid final conclusion
an appropriate multiplicity adjustment should be made. We
present a short nontechnical overview of statistical proce-
dures for multiple test adjustment. More technical and com-
prehensive overviews can be found elsewhere [10,14–16].

 

4. General procedures for multiple test adjustments

 

4.1. General procedures based upon P values

 

The simplest multiple test procedure is the well-known
Bonferroni method [17]. Of 

 

k

 

 significance tests, those ac-
cepted as statistically significant have 

 

P

 

 values smaller than
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a

 

/

 

k

 

, where 

 

a

 

 is the MEER. Adjusted 

 

P

 

 values are calculated
by 

 

k 

 

3 

 

P

 

i

 

, where 

 

P

 

i

 

 for 

 

i 

 

5 

 

1, . . . , 

 

k

 

 are the individual unad-
justed 

 

P

 

 values. In the same manner Bonferroni adjusted
confidence intervals can be constructed by dividing the
multiple confidence level with the number of confidence in-
tervals. The Bonferroni method is simple and applicable in
essentially any multiple test situation. However, the price
for this simplicity and universality is low power. In fact, the
Bonferroni method is frequently not appropriate, especially
if the number of tests is large. Bonferroni corrections should
only be used in cases where the number of tests is quite
small (say, less than 5) and the correlations among the test
statistics are quite low.

Fortunately, there are a number of improvements of the
Bonferroni method [2,16,18], such as the well-known Holm
procedure [19,20]. Some of these modified Bonferroni
methods represent stepwise procedures based upon the
closed testing procedure introduced by Marcus et al. [21],
which is a general principle leading to multiple tests con-
trolling the multiple level [10]. A general algorithm for ob-
taining adjusted 

 

P

 

 values for any closed test procedure is
outlined by Wright [16]. While some of these methods are
quite complex, the Holm method is just as simple and gen-
erally applicable as the Bonferroni method, but much more
powerful [16,18].

 

4.2. Resampling-based procedures

 

Despite being more powerful than the simple Bonferroni
method, the modified Bonferroni methods still tend to be
conservative. They make use of the mathematical properties
of the hypotheses structure, but they do not take the correla-
tion structure of the test statistics into account. One ap-
proach that uses the information of dependencies and distri-
butional characteristics of the test statistics to obtain
adjusted 

 

P

 

 values is given by resampling procedures [22].
For highly correlated tests, this approach is considerably
more powerful than the procedures discussed above. How-
ever, the price for the gain of power is that the resampling-
based procedures are computer intensive. PROC MULT-
TEST of SAS offers resampling-based adjusted 

 

P

 

 values for
some frequently used significance tests [22,23].

 

5. Special procedures for multiple test adjustments

 

One main advantage of the general multiple test proce-
dures based upon 

 

P

 

 values is that they are universally appli-
cable to different types of data (continuous, categorical,
censored) and different test statistics (e.g., 

 

t

 

, 

 

x

 

2

 

, Fisher,
logrank). Naturally, these procedures are unspecific and
special adjustment procedures have been developed for cer-
tain questions in specific multiplicity situations.

 

5.1. More than two groups

 

One area in which multiplicity adjustment has a long his-
tory is the comparison of the means of several groups in

analysis of variance (ANOVA) [24]. For this application a
number of procedures exist. The most well-known methods,
which are frequently implemented in ANOVA procedures
of statistical software packages, are the following. The si-
multaneous test procedures of 

 

Scheffé

 

 and 

 

Tukey

 

 can also be
used to calculate simultaneous confidence intervals for all
pairwise differences between means. The method of 

 

Dun-
nett

 

 can be used to compare several groups with a single
control. In contrast to these single-step procedures, multiple
stage tests are in general more powerful but give only ho-
mogenous sets of treatment means but no simultaneous con-
fidence intervals. The most well-known multiple stage tests
are the procedures of 

 

Duncan

 

, 

 

Student–Newman–Keuls

 

(SNK), and 

 

Ryan–Einot–Gabriel–Welsch

 

 (REGW). These
procedures, with the exception of Duncan, preserve the
MEER, at least in balanced designs. Which of these tests are
appropriate depends on the investigator’s needs and the
study design. In short, if the MEER should be under control,
with no confidence intervals needed and a balanced design,
then the REGW procedure can be recommended. If confi-
dence intervals are desirable or the design is unbalanced,
then the Tukey procedure is appropriate. In case of ordered
groups (e.g., dose finding studies), procedures for specific
ordered alternatives can be used with a substantial gain in
power [10]. More detailed overviews of multiple test proce-
dures for the comparison of several groups are given else-
where [16,25–27]. Multiple comparison procedures for
some nonparametric tests are also available [28].

In the frequent case of three groups the principle of
closed testing leads to the following simple procedure that
keeps the multiple level 

 

a

 

 [10]. At first, test the global null
hypothesis that all three groups are equal by a suitable level

 

a

 

 test (e.g., and 

 

F

 

 test or the Kruskal–Wallis test). If the glo-
bal null hypothesis is rejected proceed with level 

 

a

 

 tests for
the three pairwise comparisons (e.g., 

 

t

 

 tests or Wilcoxon
rank sum tests).

 

5.2. More than one endpoint

 

The case of multiple endpoints is one of the most com-
mon multiplicity problems in clinical trials [29,30]. There
are several possible strategies to deal with multiple end-
points. The simplest approach, which should always be con-
sidered first, is to specify a 

 

single primary endpoint

 

. This
approach makes adjustments for multiple endpoints unnec-
essary. However, all other endpoints are then subsidiary and
results concerning secondary endpoints can only have an
exploratory rather than a confirmatory interpretation. The
second possibility is to combine the outcomes in 

 

one aggre-
gated endpoint

 

 (e.g., a summary score for quality of life
data or the time to the first event in the case of survival
data). The approach is adequate only if one is not interested
in the results of the individual endpoints. Thirdly, for signif-
icance testing 

 

multivariate methods

 

 [e.g., multivariate anal-
ysis of variance (MANOVA) or Hotelling’s T

 

2

 

 test] and

 

global test statistics

 

 developed by O’Brien [31] and ex-
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tended by Pocock et al. [32] can be used. Exact tests suit-
able for a large number of endpoints and small sample size
have been developed by Läuter [33]. All these methods pro-
vide an overall assessment of effects in terms of statistical
significance but offer no estimate of the magnitude of the
effects. Again, information about the effects concerning the
individual endpoints is lacking. In addition, Hotelling’s T

 

2

 

test lacks power since it tests for unstructured alternative
hypotheses, when in fact one is really interested in evidence
from several outcomes pointing in the same direction [34].
Hence, in the case of several equally important endpoints
for which individual results are of interest, multiple test ad-
justments are required, either alone or in combination with
previously mentioned approaches. Possible methods to ad-
just for multiple testing in the case of multiple endpoints are
given by the general adjustment methods based upon 

 

P

 

 val-
ues [35] and the resampling methods [22] introduced above.
It is also possible to allocate different type 1 error rates to
several not equally important endpoints [36,37].

 

5.3. Repeated measurements

 

Methods to adjust for multiple testing in studies collect-
ing repeated measurements are rare. Despite much recent
work on mixed models [38,39] with random subject effects
to allow for correlation of data, there are only few multiple
comparison procedures for special situations. It is difficult
to develop a general adjustment method for multiple com-
parisons in the case of repeated measurements since these
comparisons occur for between-subject factors (e.g.,
groups), within-subject factors (e.g., time), or both. The
specific correlation structure has to be taken into account,
involving many difficulties. If only comparisons for be-
tween-subject factors are of interest, one possibility is to
consider the repeated measurements as multiple endpoints
and use one of the methods mentioned in the previous sec-
tion. However, if the repeated measurements are ordered,
this information is lost by using such an approach.

If repeated measurements are collected serially over
time, the use of 

 

summary measures

 

 (e.g., area under the
curve) to describe the response curves should be consid-
ered [40,41]. The analysis takes the form of a two-stage
method where, in the first step, suitable summary measures
for each response curve are calculated , and in the second
step, these summary measures are analyzed by using the
approaches discussed above. The choice of an adequate ap-
proach in the second stage depends on the number of
groups to be compared and the number of summary mea-
sures to be analyzed. Only in the case of two groups and
one summary measure as single primary endpoint does no
multiplicity problem arise. To compare response curves be-
tween groups, Zerbe and Murphy have developed an exten-
sion of the Scheffé method and a stepwise procedure to ad-
just for multiple testing [42]. There are also multiple
comparison procedures for some nonparametric tests suit-
able for related samples [28].

 

5.4. Subgroup analyses

 

The extent to which subgroup analyses should be under-
taken and reported is highly controversial [43,44]. We will
not discuss the full range of problems and issues related to
subgroup analyses but focus on the multiplicity problem. If
one is interested in demonstrating a difference in the magni-
tude of the effect size between subgroups, a statistical test of
interaction is appropriate, although such tests generally
have low power [45]. If it is the aim to show an effect in all
(or in some) of a priori defined subgroups on the basis of
existing hypotheses, an adjustment for multiple testing
should be performed by using one of the general procedures
based upon 

 

P

 

 values. If there are few nonoverlapping sub-
groups, a test within one subgroup is independent of a test
within another subgroup. In this case, the use of the simple
Bonferroni method is possible. Frequently, however, sub-
group analyses are performed concerning subgroups that are
defined a posteriori after data examination. In this case, the
results have an exploratory character regardless of whether
multiplicity adjustments are performed or not. For interpre-
tation of such analyses one should keep in mind that the
overall trial result is usually a better guide to the effect in
subgroups than the estimated effect in the subgroups [46].

 

5.5. Interim analyses

 

Interim analyses of accumulating data are used in long-
term clinical trials with the objective to terminate the trial
when one treatment is significantly superior to the other(s).
Since repeated analyses of the data increase the type 1 error,
multiplicity adjustments are required for the development of
adequate stopping rules. A simple rule that may be suffi-
cient in many trials is: if no more than 10 interim analyses
are planned and there is one primary endpoint, then 

 

P 

 

, 

 

.01
can be used as criterion for stopping the trial, because the
global level will not exceed .05 [47]. The disadvantage of
this approach is that the final analysis has to be undertaken
at a significance level considerably smaller than .05 (also
.01). Another simple possibility is to be extremely cautious
for stopping the trial early by using 

 

P 

 

, 

 

.001 for the interim
analyses [48]. This approach covers any number of interim
analyses and is so conservative that the final analysis can be
conducted at the usual .05 level. A compromise between
these approaches is to use the procedure developed by
O’Brien and Fleming [49] with varying nominal signifi-
cance levels for stopping the trial. Early interim analyses
have more stringent significance levels while the final anal-
ysis is undertaken as close to the .05 level as possible. Over-
views about recent developments in the field of interim
monitoring of clinical trials are given elsewhere [50–56].

 

6. Discussion

 

The problem of multiple hypotheses testing in biomedi-
cal research is quite complex and involves several difficul-
ties. Firstly, it is required to define which significance tests
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belong to one experiment; that means which tests should be
used to make one final conclusion. Secondly, the particular
error rate to be under control must be chosen. Thirdly, an
appropriate method for multiple test adjustment has to be
found that is applicable and feasible in the considered situa-
tion. Many multiple test procedures for standard situations
have been developed, but in the practice of clinical and epi-
demiological trials, there are a lot of situations in which an
adequate control of type 1 error is quite complex, especially
if there are several levels of multiplicity (e.g., more than
two groups 

 

and

 

 more than one endpoint 

 

and

 

 repeated mea-
surements of each endpoint). Unfortunately, the level of
complexity can be so high that it is impossible to make an
adequate adjustment for multiple testing. For example, the
UK Prospective Diabetes Study (UKPDS) [57] contains an
enormous complexity regarding multiplicity. Considering
only the four main UKPDS publications in the year 1998
(UKPDS 33,34,38,39) [58–61] (i.e., neglecting the interim
analyses and multiple significance tests published in earlier
and future articles) there are 2, 4 or 5 main treatment groups
(dependent on the question), additional comparisons be-
tween specific medications (e.g., captopril vs. atenolol), ap-
proximately 50 endpoints (7 aggregated, 21 single, 8 surro-
gate, and 12 compliance endpoints), and subgroup analyses
(e.g., regarding overweight patients).

Of course, for such a specific and complex design no ad-
equate and powerful multiple test procedure exists. Al-
though Bonferroni adjustments would be principally possi-
ble, they would allow only comparisons with 

 

P

 

 values
below .00017 (.05/298) to be significant, as we counted 298
different 

 

P

 

 values in the four articles. Naturally, with nearly
300 tests the Bonferroni procedure has not enough power to
detect any true effect and cannot be recommended here. The
UKPDS group tried to account for multiplicity by calculat-
ing 99% confidence intervals for single endpoints [60]. This
approach slightly reduces the risk of type 1 error, but for a
confirmatory study this procedure is not an adequate solu-
tion since the main goal of a significance test, namely the
control of the type 1 error to a given level, is not achieved.
Moreover, although 99% confidence intervals were calcu-
lated, unadjusted 

 

P

 

 values were presented with the effect
that they are interpreted with the usual 5% level of signifi-
cance [62]. Hence, in the UKPDS no firm conclusions can
be drawn from the significance tests as the actual global sig-
nificance level exceeds 5% by a large and unknown amount.

To avoid such difficulties a careful planning of the study
design is required, taking multiplicity into account. The eas-
iest and best interpretable approach is to avoid multiplicity
as far as possible. A good predefined statistical analysis
plan and a prespecification of the hypotheses and their pri-
orities will in general reduce the multiplicity problem. If
multiplicity can not be avoided at all (e.g., because there are
several equally important endpoints), the investigators
should clearly define which hypotheses belong to one ex-
periment and then adjust for multiple testing to achieve a
valid conclusion with control of the type 1 error. In the UK-

PDS one could have defined the intensive versus the con-
ventional treatment as the primary comparison, with the
consequence that confirmatory statements concerning the
different intensive treatments are impossible. Furthermore,
one could have defined the aggregated endpoint “any diabe-
tes-related endpoint” as the primary outcome, with the con-
sequence that all other aggregated endpoints are subsidiary.
By means of a closed testing procedure it would have been
possible to perform tests concerning the single endpoints
forming the primary aggregated outcome (e.g., blindness,
death from hypoglycemia, myocardial infarction, etc.) by
preserving the MEER. The number of confirmatory analy-
ses would be drastically reduced, but the results would be
interpretable.

A further problem we did not mention in detail concerns
the type of research in which estimates of association can be
obtained for a broad range of possible predictor variables. In
such studies, authors may focus on the most significant of
several analyses—a selection process that may bias the
magnitude of observed associations (both point estimates
and confidence intervals). One way to deal with this type of
multiplicity problem is to demand reproduction of the ob-
served associations and their magnitude in further indepen-
dent trials. However, this ‘solution’ does not address the ad-
justment of significance levels. A data-driven analysis and
presentation, also called ‘data dredging’ or ‘data fishing,’
can only produce exploratory results. It can be used to gen-
erate hypotheses but not to test and confirm them, regard-
less of whether multiplicity corrections are performed or
not. Hence, the use of multiple test procedures cannot pro-
tect against the bias caused by data fishing.

In principal, there is an alternative approach to signifi-
cance testing for analysis of data. Bayes methods differ
from all the methods discussed above in minimizing the
Bayes risk under additive loss rather than controlling type 1
error rates. From a Bayesian perspective control of type 1
error is not necessary to make valid inferences. Thus, the
use of Bayes methods avoids some of the conceptual and
practical difficulties involved with the control of type 1 er-
ror, especially in the case of multiplicity. Hence, Bayes
methods are useful for some of the multiplicity situations
discussed above. Examples are the monitoring of clinical
trials [63] and the use of empirical Bayes methods for the
analysis of a large number of related endpoints [64,65].
However, in this article we concentrate on classical statisti-
cal methods based upon significance tests. We started from
the assumption that an investigator had decided to use sig-
nificance tests for data analysis. For this case we tried to
summarize the available corresponding procedures to adjust
for multiple testing. Bayes methods—which do not provide
adjustments of 

 

P

 

 values as they do not give P values at all—
are not further discussed here.

In summary, methods to adjust for multiple testing are
valuable tools to ensure valid statistical inference. They
should be used in all confirmatory studies where on the ba-
sis of a clearly defined family of tests one final conclusion
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and decision will be drawn. In such cases the maximum ex-
perimentwise error rate under any complete or partial null
hypothesis should be under control. While the simple Bon-
ferroni method is frequently not appropriate due to low
power, there are a number of more powerful approaches ap-
plicable in various multiplicity situations. These methods
deserve wider knowledge and application in biomedical and
epidemiological research.
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